Known 134-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 134-digit prime factors of googolduplex − 1
This is a list of known
134-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1128 4745767893 9600764998 7075733355 8507059189 3450120402 0648401638 0272805690 7653808593 7500000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1624 1773315424 1892066765 0981888000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=41)
- 1676 1669978220 6593882944 2060945650 6695829959 1488831488 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 1737 4986782670 0210571289 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=597)
- 2022 8941139429 7329303301 8075838408 1223767356 4128235487 2320000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 2048 9043222125 1291903851 0085207467 9178641464 4206420322 6733311257 0207775321 1785495179 3541845254 0156133219 4465549595 4432000000 0000000001 (Phil Carmody, k=13)
- 2117 5823681357 5084767080 6251699104 9051284790 0390625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2376 0645661657 1408602881 0447532962 0706652413 2877833924 4192142037 6048520996 2767026116 0539221022 0902112705 9046400000 0000000000 0000000001 (Phil Carmody, k=259)
- 2748 7790694400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4408 1038155835 7815488276 2014583421 2918199958 3789532820 5657818898 5440647229 5522689819 3359375000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4783 2727432250 9765625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=321)
- 4806 6890587877 6559863175 5776000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=497)
- 5006 7901611328 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 5078 2529491751 7172766701 9287587815 5697488740 7219959252 6127681235 1047574178 7554768147 3946681762 7544514834 8808288574 2187500000 0000000001 (Phil Carmody, k=19)
- 6552 2834949816 3273400320 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 7327 4719625260 3316679596 9009399414 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 8105 4462466121 3367964996 8950608153 5497288989 2659483948 2762030880 5539190747 9552000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 9324 8106826834 9954041341 7152752890 7518835528 2745026970 2008699566 7467405689 8500079124 4800000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)