Known 125-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 125-digit prime factors of googolduplex − 1

This is a list of known 125-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11307 8212145816 5970933310 4004754678 5012958969 4000396133 1978279688 2727665664 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 12361 8203607997 1761800540 5660607204 5568000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
  3. 14470 3488000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
  4. 16250 0339057673 0251015981 3890560324 2501652326 5681733789 7336983587 5928401947 0214843750 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  5. 21317 3274764942 4833376291 9137280000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=861)
  6. 33423 3600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
  7. 41943 0400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 45691 5723451491 4774802574 4048489164 6842294088 5450632153 9842627877 0590287880 2650387709 9520000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
  9. 52679 5342172649 2950606817 9058291878 1868941573 2506132480 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  10. 58067 2138531215 7002373424 2825617183 9105537870 5148805120 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=97)
  11. 60267 0443536817 3258628776 1918132712 9741015055 9622519031 1727992753 5321348841 5349274873 7335205078 1250000000 0000000000 0000000001 (Phil Carmody, k=21)
  12. 62172 4893790087 6626372337 3413085937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  13. 63927 8520519288 5473772055 2742353067 1185792883 7986457769 1093460582 4000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=777)
  14. 66183 0572830063 5180187495 0168209976 3132198745 5585992995 0069399077 4439857880 6172094885 9900350002 0067404173 8295246848 0000000001 (Phil Carmody, k=43)
  15. 72057 5940379279 3600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  16. 73491 6243527092 0065891607 4831152077 8758664928 7801193786 3905892375 3744207730 9903102031 0042747974 6084864000 0000000000 0000000001 (Phil Carmody, k=21)
  17. 75264 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
  18. 77928 0760567137 9952006327 2910846961 9852506996 7997609959 8554954037 3255362476 7692800000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=673)