Known 113-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 113-digit prime factors of googolduplex − 1

This is a list of known 113-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 104 8576000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 132 9227995784 9158729038 0706028034 4576000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 176 5434863077 5039648288 1577527715 6179528787 4687555097 0675200000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  4. 180 2239061558 2678820207 9956458055 9596696031 9407384257 7464281635 6599997893 6274154640 8187426085 2736000000 0000000001 (Phil Carmody, k=27)
  5. 216 8404344971 0088680149 0560173988 3422851562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  6. 228 8818359375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 232 8306436538 6962890625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 241 5919104000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  9. 317 3828125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  10. 366 0569285267 0534781139 9991210016 7680000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
  11. 406 5758146820 6416275279 4800326228 1417846679 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  12. 410 1095108968 1473581984 4167584554 0060037192 6829247733 1829831988 7018661873 4988298560 4408720691 8225920000 0000000001 (Phil Carmody, k=3)
  13. 437 9057701015 0533466366 5494778098 7910250818 5683641117 8674083838 7155597133 3933143796 4574433863 1629943847 6562500001 (Phil Carmody, k=1)
  14. 470 1032857261 3668818291 8987877201 2889385223 3886718750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
  15. 509 2589940836 2152156711 1422102344 5402628670 9841648406 2659035112 3385953249 4083417654 5849344000 0000000000 0000000001 (Phil Carmody, k=1)
  16. 564 2372883946 9800382499 3537866677 9253529594 6725060201 0324200819 0136402845 3826904296 8750000000 0000000000 0000000001 (Phil Carmody, k=3)
  17. 652 7367477878 4496782893 9200692702 3526318486 9792151887 9140608969 6722718398 2895005538 7136000000 0000000000 0000000001 (Phil Carmody, k=21)
  18. 703 6874417766 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  19. 735 5978596156 2665201200 6573032148 4081369947 7864812904 4480000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)