Known 113-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 113-digit prime factors of googolduplex − 1
This is a list of known
113-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 104 8576000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 132 9227995784 9158729038 0706028034 4576000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 176 5434863077 5039648288 1577527715 6179528787 4687555097 0675200000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 180 2239061558 2678820207 9956458055 9596696031 9407384257 7464281635 6599997893 6274154640 8187426085 2736000000 0000000001 (Phil Carmody, k=27)
- 216 8404344971 0088680149 0560173988 3422851562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 228 8818359375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 232 8306436538 6962890625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 241 5919104000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 317 3828125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 366 0569285267 0534781139 9991210016 7680000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
- 406 5758146820 6416275279 4800326228 1417846679 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 410 1095108968 1473581984 4167584554 0060037192 6829247733 1829831988 7018661873 4988298560 4408720691 8225920000 0000000001 (Phil Carmody, k=3)
- 437 9057701015 0533466366 5494778098 7910250818 5683641117 8674083838 7155597133 3933143796 4574433863 1629943847 6562500001 (Phil Carmody, k=1)
- 470 1032857261 3668818291 8987877201 2889385223 3886718750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 509 2589940836 2152156711 1422102344 5402628670 9841648406 2659035112 3385953249 4083417654 5849344000 0000000000 0000000001 (Phil Carmody, k=1)
- 564 2372883946 9800382499 3537866677 9253529594 6725060201 0324200819 0136402845 3826904296 8750000000 0000000000 0000000001 (Phil Carmody, k=3)
- 652 7367477878 4496782893 9200692702 3526318486 9792151887 9140608969 6722718398 2895005538 7136000000 0000000000 0000000001 (Phil Carmody, k=21)
- 703 6874417766 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 735 5978596156 2665201200 6573032148 4081369947 7864812904 4480000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)