Known 107-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 107-digit prime factors of googolduplex − 1
This is a list of known
107-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1125673 7330026677 0852907244 6373888000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 1152921 5046068469 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1425925 1834341402 6038791198 1886564712 7360278755 6615537544 5298314548 0669098343 3569432837 8163200000 0000000001 (Phil Carmody, k=7)
- 1455837 1200261345 4891201881 4699060056 3764057988 1719091397 9594953457 6640000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 1601990 2769406825 6179626627 9627164085 9520283917 6748957746 0281205866 6647943354 8041251722 1565202432 0000000001 (Phil Carmody, k=3)
- 1769787 1389553902 5251227460 2117373969 1146058137 6000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 2107181 3686905971 8024272716 2331675127 4757662930 0245299200 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 2503109 8077198165 0280666606 1917443884 3000443621 3670246478 1689384166 6637411491 8814455815 8695628800 0000000001 (Phil Carmody, k=3)
- 3356933 5937500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
- 3713820 1178561408 2469737267 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3819442 4556271614 1175333566 5767584051 9715032381 2363046994 2763342539 4649370562 5632409387 0080000000 0000000001 (Phil Carmody, k=3)
- 3923188 5846166754 7739736838 9504791510 0639721527 9002157056 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4456584 1414273689 8963684720 6400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 8246337 2083200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 8418249 4310260008 0885322463 6445790193 2181714475 4176000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 9974659 9868666407 9286856576 8003463745 1171875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)