Known 106-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 106-digit prime factors of googolduplex − 1

This is a list of known 106-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 106958 0193942568 5575128433 2953600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  2. 120459 1981718294 8463596403 5987854003 9062500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=217)
  3. 129246 9707114105 7419865760 8135931695 8696581423 2826232910 1562500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 145320 4891204052 9317263505 4414100121 9203325294 5594931984 6519429688 6693337000 9064674377 4414062500 0000000001 (Phil Carmody, k=989)
  5. 147774 3627730944 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  6. 153791 0665863055 2593244156 2844207752 2513947256 0967899943 6186995763 1998202562 0611960165 3270259433 4720000001 (Phil Carmody, k=9)
  7. 176160 7680000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  8. 215050 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=537627)
  9. 225972 6149029420 0729600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
  10. 397223 0510298673 9469279545 0658141259 4484834649 4442381526 8237376585 6027603149 4140625000 0000000000 0000000001 (Phil Carmody, k=33)
  11. 419952 1391583382 8947952042 7606583302 1478085307 3149678779 3747956430 7109758462 8017725891 4529988426 3342080001 (Phil Carmody, k=3)
  12. 690174 6346790563 7874347558 6227702545 2451108972 1703865551 6252422379 9296000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 766674 1922616708 4838452369 9384207866 9636475041 2158173276 1114835739 1357421875 0000000000 0000000000 0000000001 (Phil Carmody, k=311)
  14. 769498 3944348614 5454821955 5990418227 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=741)