Known 92-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 92-digit prime factors of googolduplex − 1
This is a list of known
92-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10 9979260988 8473113913 6267312194 7485942579 2000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
- 11 5555796663 2341511833 5867655509 5639112286 0988929232 9171439632 7733993530 2734375000 0000000001 (Phil Carmody, k=3)
- 12 8387652791 1150737835 8610064048 1280000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=633)
- 13 6396331787 1093750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=893887)
- 15 0148273510 4494038709 5208300312 7380673168 3422315797 0554847232 0000000000 0000000000 0000000001 (Phil Carmody, k=299)
- 15 4618822656 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 16 4455674669 6189027474 6879203081 9747109186 5809774974 9213473202 2520217600 0000000000 0000000001 (Phil Carmody, k=61)
- 18 2561346129 8674360556 0387149200 3520415892 1260386705 3985595703 1250000000 0000000000 0000000001 (Phil Carmody, k=113)
- 23 1337288241 8261815682 4735052533 7949394713 3815727468 2423292233 5795592516 6606903076 1718750001 (Phil Carmody, k=123)
- 24 4140625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- +32886082501657187247904557195788749020689459942486319578774270656490822624175142646095920001 ()
(k=411076031270714840598806964947359362758618249281078994734678383206135282802189283076199)
- 33 4511177977 9593471230 3577408972 5422589706 2400000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 38 5075782538 6868899840 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=167)
- 45 5313021615 4052509967 4888441176 2243744314 1029028452 0029339353 3532555691 8449707417 6000000001 (Phil Carmody, k=3)
- 58 8806869927 7937412261 9628906250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=3237)
- 82 7180612553 0276748714 0869206996 2853565812 1109008789 0625000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)