Known 86-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 86-digit prime factors of googolduplex − 1
This is a list of known
86-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 104233 7023131648 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
- 108086 3910568919 0400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 118904 8859373542 6547937095 1652526855 4687500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1071)
- 160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 221360 9288845146 1939200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 252749 5000045372 4807500326 6440809037 5653482289 6131786701 0346346086 4000000000 0000000001 (Phil Carmody, k=3)
- 279724 6093750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=143219)
- 287113 2470895418 2854722232 5020554428 4160000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 324987 1500709381 9332560641 3555076724 7340903334 6263202301 1350282240 0000000000 0000000001 (Phil Carmody, k=79)
- 345876 4513820540 9280000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 468315 6491691430 8597225008 3725615591 6255887360 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 495176 0157141521 0995964968 9600000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 705735 1835038781 3904496077 0838231477 8036868594 9941006045 4759976975 4613223597 0464972801 (Phil Carmody, k=93)
- 768570 0094787584 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=3578933)
- 790193 0132589739 4259102268 5874378172 8034123598 7591987200 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 822922 4448000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=981)
- 844011 0832452774 0478515625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
- 954969 4368615746 4981079101 5625000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)