Known 79-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 79-digit prime factors of googolduplex − 1
This is a list of known
79-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 100994414 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2585457)
- 112987831 2369602537 4904420961 7737995489 8423980003 5262123212 8000000000 0000000001 (Phil Carmody, k=9)
- 113334126 3854980661 5342350244 8637516030 6859327455 1281308813 5446528000 0000000001 (Phil Carmody, k=551)
- 117187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 120056012 5021551928 3562655155 9384292843 5404087566 2598682991 4514391040 0000000001 (Phil Carmody, k=57)
- 139698386 1923217773 4375000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 140545557 0042880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=523573)
- 141001207 2157890974 5858032565 0245868018 8283324241 6381835937 5000000000 0000000001 (Dario Alpern, k=8523)
- 158399343 4906005859 3750000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1063)
- 171294720 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2091)
- 175245033 4720000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2674027)
- 191323046 2946557963 7326300144 1955566406 2500000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1077053)
- 223007451 9853062314 1535718272 6483615059 8041600000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 240922815 7546048808 3500771444 5783477685 8362602069 9739456176 7578125000 0000000001 (Dario Alpern, k=37281)
- 314572800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 382998143 3227658271 7895507812 5000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=3289929)
- 399285897 7930284721 3626791525 4537186342 5316405482 5901985168 4570312500 0000000001 (Dario Alpern, k=123573)
- 429098751 4424488803 4033716760 2086571413 2469542114 0860928000 0000000000 0000000001 (Phil Carmody, k=7)
- 437817802 3976615520 0350935373 1946357468 6295714855 0776764750 4806518554 6875000001 (Phil Carmody, k=111)
- 534577026 3671875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=875851)
- 587314495 4880000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=2240427)
- 717783117 7238545713 6805581255 1386071040 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 725355491 7687775048 2370560000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 727918939 0466643538 8683964902 1567311137 9146575927 7343750000 0000000000 0000000001 (Phil Carmody, k=11)
- 810822288 7591789995 7315171377 5587268173 6946105957 0312500000 0000000000 0000000001 (Dario Alpern, k=3829)
- 832667268 4688674053 1772375106 8115234375 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 871122859 3176024664 6623899502 5326621327 3600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 872415232 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 963414456 1734543451 3749443608 5760000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)