Known 78-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 78-digit prime factors of googolduplex − 1
This is a list of known
78-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10759965 4080897839 9472728426 6446076799 1840839385 9863281250 0000000000 0000000001 (Phil Carmody, k=813)
- 10821304 3200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
- 10942500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=4377)
- 11464014 9586828221 6505917858 7398491799 8313903808 5937500000 0000000000 0000000001 (Dario Alpern, k=169179)
- 12621954 0834426879 8828125000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=169409)
- 16465072 6318359375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=215811)
- 19236452 4309596163 2207036018 3715820312 5000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=270729)
- 21007190 4430437785 2800453815 5805696220 8980629340 4361407727 5933106189 1072000001 (Phil Carmody, k=487)
- 22300745 1985306231 4153571827 2648361505 9804160000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 28862693 4852320715 6631542602 5539636611 9384765625 0000000000 0000000000 0000000001 (Dario Alpern, k=1663821)
- 33703125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=2157)
- 40149688 7207031250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=421)
- 42651500 3347654894 8555701068 4857459636 9871869683 2656860351 5625000000 0000000001 (Phil Carmody, k=33)
- 43568332 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=831)
- 45035996 2737049600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 46528909 4561078067 1151673892 8935410513 0769312381 7443847656 2500000000 0000000001 (Phil Carmody, k=9)
- 46875000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 47645603 2830543940 7259314066 3229860365 3907775878 9062500000 0000000000 0000000001 (Phil Carmody, k=9)
- 52571406 3360000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=6267)
- 68495734 1365394604 9497613418 6042055932 5089026099 9154460472 1152000000 0000000001 (Phil Carmody, k=341)
- 74216880 0207099138 1503087041 1373747091 9028244480 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 86389229 1036449933 0171383917 3316955566 4062500000 0000000000 0000000000 0000000001 (Phil Carmody, k=249)
- 86669921 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=71)
- 99107280 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=1238841)