Known 63-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 63-digit prime factors of googolduplex − 1

This is a list of known 63-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 110 1562500000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
  2. 144 2559255642 1120000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=41)
  3. 165 1906269570 6624000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=939)
  4. 169 1287626441 6065730245 0090355705 4698467254 6386718750 0000000001 (Dario Alpern, k=24959)
  5. 178 6710123114 5397777222 4277487111 9763702154 1595458984 3750000001 (Phil Carmody, k=27)
  6. 181 1981201171 8750000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  7. 195 8459827775 6992630240 0512000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
  8. 210 9885599566 0414919257 1640014648 4375000000 0000000000 0000000001 (Dario Alpern, k=14847)
  9. 257 3176683094 4065945600 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=3571)
  10. 264 0769730395 4474891979 3211743928 3200000000 0000000000 0000000001 (Phil Carmody, k=651)
  11. 275 8493826980 3973569413 1200000000 0000000000 0000000000 0000000001 (Dario Alpern, k=598153)
  12. 284 3433355651 0326323704 6737899049 7309132479 1312217712 4023437501 (Phil Carmody, k=11)
  13. 310 3208669358 7055748639 2944676044 8000000000 0000000000 0000000001 (Phil Carmody, k=153)
  14. 325 1238642991 3084723200 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
  15. 333 4710296924 1741557877 6313107907 2783554376 3298715183 3497600001 (Phil Carmody, k=17)
  16. 342 5394462494 3037145398 8632667878 8327318591 8976000000 0000000001 (Phil Carmody, k=3)
  17. 344 6803177884 8931127557 6061622053 0754364333 0969600000 0000000001 (Phil Carmody, k=483)
  18. 358 7722778320 3125000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1881)
  19. 365 3754093327 2572955092 1208179070 7549139831 3574400000 0000000001 (Phil Carmody, k=1)
  20. 405 8744094720 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=189)
  21. 411 9348013847 5092512672 3680898003 1085567170 7604295226 4908800001 (Phil Carmody, k=21)
  22. 418 1389724724 4918390379 4717612156 7782371328 0000000000 0000000001 (Phil Carmody, k=3)
  23. 439 5469530726 4000000000 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=5117)
  24. 637 2147138762 7367233680 6587064299 3965699865 8873753600 0000000001 (Phil Carmody, k=109)
  25. 710 4245014488 6970520019 5312500000 0000000000 0000000000 0000000001 (Phil Carmody, k=2441)