Known 48-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 48-digit prime factors of googolduplex − 1
This is a list of known
48-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10035028 7760979960 7910400000 0000000000 0000000001 (Phil Carmody, k=17)
- 10910028 4362284583 0395817756 6528320312 5000000001 (Dario Alpern, k=30709)
- 11043434 6598400000 0000000000 0000000000 0000000001 (Phil Carmody, k=2057)
- 14260633 6000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 17106300 0000000000 0000000000 0000000000 0000000001 (Dario Alpern, k=171063)
- 18010779 7280426833 3646515914 1982208000 0000000001 (Phil Carmody, k=111)
- 18446744 0737095516 1600000000 0000000000 0000000001 (Phil Carmody, k=1)
- 19326762 4126747250 5569458007 8125000000 0000000001 (Phil Carmody, k=17)
- 20769187 4341393105 1412198531 6880384000 0000000001 (Phil Carmody, k=1)
- 23283064 3653869628 9062500000 0000000000 0000000001 (Phil Carmody, k=1)
- 24000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 26147972 6759716868 4005737304 6875000000 0000000001 (Phil Carmody, k=23)
- 28823037 6151711744 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 29618177 2167984838 5985212583 0861105125 1302400001 (Phil Carmody, k=17)
- 30174851 4175415039 0625000000 0000000000 0000000001 (Phil Carmody, k=81)
- 30627411 7877760000 0000000000 0000000000 0000000001 (Dario Alpern, k=7131)
- 38146972 6562500000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 42653169 8583609016 3200000000 0000000000 0000000001 (Dario Alpern, k=303069)
- 57022401 7408000000 0000000000 0000000000 0000000001 (Dario Alpern, k=8497)
- 66506909 2065095901 4892578125 0000000000 0000000001 (Dario Alpern, k=57129)
- 67584826 6240564043 9828857779 5028686523 4375000001 (Phil Carmody, k=487)
- 69815466 0827448348 3928166400 0000000000 0000000001 (Phil Carmody, k=231)
- 88691711 4257812500 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
- 93917933 2701790159 1589139165 1168026361 8560000001 (Phil Carmody, k=69)
- 96160515 6730064577 5160115200 0000000000 0000000001 (Dario Alpern, k=651609)