Known 365-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 365-digit prime factors of googolduplex − 1

This is a list of known 365-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 13453 9983996304 3821216681 2645717122 0513323656 2601314561 6459422413 8618665240 1409817035 1767139074 6131391356 6070446550 4134288989 2085988358 8044496574 5149496635 0435571912 5793960988 9624607396 2445237508 3056295985 0530934724 2179415116 1986607347 9681383175 4525159240 1823530501 2528361140 2056787309 7468980015 7020891369 0862573275 8082449436 1877441406 2500000000 0000000000 0000000001 (Phil Carmody, k=21)
  2. 21272 7827353783 3523886857 6476792704 2408032060 1101020372 8875650922 9124433184 0769878159 4323796687 7022535232 6530918456 4335848594 6823675116 8996563773 3432544039 5678844754 5619798414 5902031460 7901445232 0390887989 3856495118 1832467426 8232398763 8153182099 5402816409 9248954244 1035155206 9187164306 6406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 21497 2035442146 8400573108 9884640726 8146253510 3796169169 9694560483 1049456034 8130590944 7275549900 6499763540 0313728856 4515224702 7023173073 2521670156 3711814984 5141836577 2264424286 4187447352 5706632176 0138420752 4922400623 8195081729 3457171484 1951064448 8888340381 6128777628 7721049616 6892339520 1602488668 8683182001 1138916015 6250000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 64971 3110352806 2011581502 8629261914 7986846425 5234804688 9115144223 7306034659 6606653266 9630183828 0777274794 1353107842 2933673013 0263665568 4359118608 2756510202 3280311423 9323379371 2196065809 1070414551 2839237582 7986202915 3996086719 4247740030 7325297035 2768898010 2539062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)