Known 33-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 33-digit prime factors of googolduplex − 1

This is a list of known 33-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 100 3887321410 6468352000 0000000001 (Dario Alpern, k=4565151)
  2. 104 8576000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 120 5444335937 5000000000 0000000001 (Phil Carmody, k=79)
  4. 146 8658447265 6250000000 0000000001 (Phil Carmody, k=77)
  5. 147 3267399393 2800000000 0000000001 (Dario Alpern, k=4390679)
  6. 166 6447310848 0000000000 0000000001 (Phil Carmody, k=97)
  7. 174 0853180245 0660115768 9344000001 (Phil Carmody, k=9)
  8. 220 8792701706 2103335450 0033740801 (Dario Alpern, k=3654141)
  9. 259 7301565578 3048675328 0000000001 (Phil Carmody, k=11)
  10. 304 9600000000 0000000000 0000000001 (Phil Carmody, k=953)
  11. 308 5733652114 8681640625 0000000001 (Dario Alpern, k=2588501)
  12. 313 6605388800 0000000000 0000000001 (Dario Alpern, k=29913)
  13. 347 9779044669 3108492009 4720000001 (Dario Alpern, k=235799)
  14. 351 5561950279 1210836198 1624320001 (Dario Alpern, k=1861123)
  15. 380 2951800684 6882044901 0961612801 (Phil Carmody, k=3)
  16. 471 1914062500 0000000000 0000000001 (Phil Carmody, k=193)
  17. 511 2278305155 4025248410 4617984001 (Dario Alpern, k=1691511)
  18. +515217525265213267447869906815873 () (k=4025136916134478651936483646999)
  19. 542 2973822789 1339840716 8000000001 (Dario Alpern, k=14699)
  20. 659 1796875000 0000000000 0000000001 (Phil Carmody, k=27)
  21. 693 5169592197 1200000000 0000000001 (Phil Carmody, k=2523)
  22. 747 4422454833 9843750000 0000000001 (Phil Carmody, k=627)
  23. 786 4320000000 0000000000 0000000001 (Phil Carmody, k=3)
  24. 862 8142080000 0000000000 0000000001 (Dario Alpern, k=26331)
  25. 885 4437155380 5847756800 0000000001 (Phil Carmody, k=3)
  26. 893 5141660703 0640640000 0000000001 (Phil Carmody, k=31)