Known 312-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 312-digit prime factors of googolduplex − 1

This is a list of known 312-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10 9679340649 6994467424 0666865756 5074553173 2046283407 7358980103 4071141115 9001628236 3623814529 4098060477 3189506331 1610072768 1837756624 7657230093 9314796863 7549638515 3383016586 3037109375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=127)
  2. 11 2360232512 6127598517 4038593260 8237677960 5601310603 9959209173 0892649198 6401759915 8767924234 0942351202 6332909751 5408047134 0208098077 9583489106 9446161138 0694250177 8899641386 8549817524 2866158995 9801858640 2758955955 5053710937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  3. 14 3821097616 1443326102 2769399373 8544227789 5169677573 1147787741 5542590974 2594252692 3222943019 6406209539 3706124481 9722300331 5466365539 7866866056 8891086256 7288640227 6991540975 1743766431 0868683514 8546379059 5531463623 0468750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 15 6607307231 9645886410 4705862215 7141336827 9421936551 9714620727 4931273357 8703396694 5334950704 4492838758 7424367666 2445068359 3750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 18 9348194310 0590345663 4525977776 7091987129 7735558464 3821987095 7006310912 1053745161 3255852581 8906041176 6851516269 5814813097 6566030594 6119051099 9569451371 2917296335 0018735070 4068668902 1079420740 3341005479 9303308546 1714786182 6563215483 5188175490 6586687687 5393516881 2699285645 3512104053 5159409046 1730957031 2500000001 (Phil Carmody, k=21)
  6. 29 3873587705 5718769921 8413430556 1419454666 3891930218 8037718792 6569604314 8636817932 1289062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  7. 42 5076499493 0627955621 9091973577 1678006768 9118119069 4492386653 8753189799 8625932122 4295604224 6078141033 6494445800 7812500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=497)