Known 310-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 310-digit prime factors of googolduplex − 1

This is a list of known 310-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1365173976 5807879620 0472905179 8014755279 4865695132 0603982405 7457369490 1817165122 4240972789 5573203424 7199345455 8365499451 6109582036 7336273193 3593750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=351)
  2. 1698868065 6725753836 5964326029 9417352564 1449244903 9821445881 9344538146 5150117259 4436343558 0985476221 6355385489 9737840182 1241936439 0721141292 0023565607 1225382157 4407482380 3345609634 2790271435 1528947566 1193596770 6207354912 0662558800 4067943584 4403782730 8254959279 8429216600 1978330314 1593933105 4687500000 0000000001 (Phil Carmody, k=23)
  3. 1725910960 8362352231 4583315794 1064848772 3840921824 2597843484 0023273725 2802191746 7546992651 3008859764 7702664120 7359478263 0653017457 0487173142 0032386304 9162275367 9261662378 8874412276 8317951457 5595100978 0559957107 4708364903 9268493652 3437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=151)
  4. 2987047333 3733480194 2915074581 4459635483 3210409861 6022388853 5975099055 4403369840 5176829351 5100342536 1393439629 8645879141 9863700866 6992187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 3261280134 8363973374 9441802501 6784667968 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
  6. 3886275849 7925000814 2385833826 0179807002 2001639963 2662326066 6561575866 3114230921 7608717837 6562529701 9522462822 7576734861 8647794526 0743760121 4385169967 6133648608 8111996650 6958007812 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  7. 4109435422 9814992223 2530056080 0816111016 8036414360 1396573653 2872150960 6692223537 0819135410 9127125916 2630729058 4071025055 4818073917 6847203571 4251973434 9270297247 9697563720 3745229640 1162426020 3720368708 1777112012 7334399025 2485003616 9556943832 5037481263 2799148559 5703125000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=253)
  8. 4628657138 6023911884 8942559136 8053858332 1322221308 9466094970 7031250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=573)
  9. 6612155723 3753672323 2414302187 5131937729 9937568429 9230848672 8347816097 0844328403 4729003906 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  10. 8433758354 5844185794 7885924101 6015206167 9691058948 0604006221 0420086515 4327758076 7380030029 6359656471 2505344667 4428678085 6440526315 2655729430 2051150103 3276147154 5381937175 9891510009 7656250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)