Known 29-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 29-digit prime factors of googolduplex − 1
This is a list of known
29-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 104857600 0000000000 0000000001 (Phil Carmody, k=1)
- 109375000 0000000000 0000000001 (Phil Carmody, k=7)
- 109951162 7776000000 0000000001 (Phil Carmody, k=1)
- 114688000 0000000000 0000000001 (Phil Carmody, k=7)
- 118125000 0000000000 0000000001 (Phil Carmody, k=189)
- 121111318 4690475463 8671875001 (Dario Alpern, k=8127643)
- 154952650 2191602335 7440000001 (Phil Carmody, k=21)
- 165355205 5358886718 7500000001 (Dario Alpern, k=13871)
- 175460065 5604940800 0000000001 (Dario Alpern, k=7979)
- 181715726 8524169921 8750000001 (Dario Alpern, k=762171)
- 196426833 8549628926 6368512001 (Dario Alpern, k=8319)
- 196761088 8575785097 3896704001 (Dario Alpern, k=266661)
- 208514457 6000000000 0000000001 (Dario Alpern, k=1018137)
- 223825100 8000000000 0000000001 (Dario Alpern, k=34153)
- 237390585 2437019348 1445312501 (Dario Alpern, k=1274481)
- 250899757 3654609920 0000000001 (Dario Alpern, k=7131)
- 281056000 0000000000 0000000001 (Dario Alpern, k=8783)
- 285568000 0000000000 0000000001 (Phil Carmody, k=2231)
- 300000000 0000000000 0000000001 (Phil Carmody, k=3)
- 310062279 0328320000 0000000001 (Phil Carmody, k=141)
- 389667906 0462328872 9600000001 (Dario Alpern, k=2768757)
- 418750000 0000000000 0000000001 (Phil Carmody, k=67)
- 487457946 7773437500 0000000001 (Dario Alpern, k=7986511)
- 532163627 8435840000 0000000001 (Phil Carmody, k=121)
- 667540997 0135040000 0000000001 (Dario Alpern, k=4857)
- 671088640 0000000000 0000000001 (Phil Carmody, k=1)
- 788129934 7898368000 0000000001 (Phil Carmody, k=7)
- 894069671 6308593750 0000000001 (Phil Carmody, k=3)