Known 281-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 281-digit prime factors of googolduplex − 1

This is a list of known 281-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1 0306869053 9575159524 5735608907 3330773477 6051544444 3306419872 4393245438 6938711038 2446090861 3301963178 0849759139 5067161101 9060947000 9803771972 6562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=53)
  2. 1 0331493317 7740113005 0647347167 9893652703 1152450671 7548201051 3043462651 6944263130 4264068603 5156250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 1 0972678956 3098398292 7152206373 1273210738 3359502988 6714766520 8094985273 3047046866 7848430100 9857651484 6321573217 9239067102 9317197077 9256200108 1000601673 6395922868 9345668104 1850568117 6061148339 4511900257 8394429292 5298213958 7402343750 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 1 1175870895 3857421875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 1 9143064575 4517542749 0605641543 6905622909 4671205778 0905202003 6461511280 5929799392 9661076776 6451169817 7875437081 0413654169 2241735290 7359600067 1386718750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
  6. 2 0456829507 1753743912 3677203251 9276587123 1499490462 1012722332 5287897582 3718131193 2234377935 7686877062 8607308026 4031887054 4433593750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=627)
  7. 2 8147497671 0656000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 3 9827297778 3113069257 2200994419 2795139777 6138798154 6965184714 6334654072 5378264540 2357724686 8004567148 5245861731 5278388559 8182678222 6562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 4 7413896876 9565818880 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=329)
  10. 5 0331648000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  11. 5 7422679318 3870158350 5058816145 7618490170 2454710069 0562027600 0808133564 5524578787 9956148591 6314040878 2055601477 6229858398 4375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  12. 9 1724738150 4025673228 1662975150 3611996015 7770845295 9256251384 8919017519 0315157402 0295470375 4278805379 3469401118 5826576563 5698444323 2844797778 6489404615 5809667732 4998944308 4219592858 1136161900 0997916217 8765932367 2414757311 3441467285 1562500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=321)