Known 28-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 28-digit prime factors of googolduplex − 1
This is a list of known
28-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 14348901 6203837440 0000000001 (Dario Alpern, k=52201)
- 14448609 2800000000 0000000001 (Dario Alpern, k=1410997)
- 15867151 3824420079 1801856001 (Phil Carmody, k=21)
- 17462298 2740402221 6796875001 (Phil Carmody, k=3)
- 19384000 0000000000 0000000001 (Phil Carmody, k=2423)
- 19648000 0000000000 0000000001 (Phil Carmody, k=307)
- 20615843 0208000000 0000000001 (Phil Carmody, k=3)
- 22530555 7250976562 5000000001 (Phil Carmody, k=189)
- 23221685 5786291200 0000000001 (Phil Carmody, k=33)
- 26214400 0000000000 0000000001 (Phil Carmody, k=1)
- 26751431 2500000000 0000000001 (Dario Alpern, k=4280229)
- 27625000 0000000000 0000000001 (Phil Carmody, k=221)
- 28823037 6151711744 0000000001 (Phil Carmody, k=1)
- 29582320 0000000000 0000000001 (Dario Alpern, k=369779)
- 30301562 5000000000 0000000001 (Dario Alpern, k=19393)
- 37550926 2084960937 5000000001 (Phil Carmody, k=63)
- 41560519 4752000000 0000000001 (Dario Alpern, k=6193)
- 45035996 2737049600 0000000001 (Phil Carmody, k=1)
- 45455610 8175100569 6895221761 (Phil Carmody, k=47)
- 53144344 7727390720 0000000001 (Dario Alpern, k=96669)
- 58074653 1486511230 4687500001 (Dario Alpern, k=974331)
- 61993648 1280000000 0000000001 (Dario Alpern, k=236487)
- 70121046 1981586227 2000000001 (Phil Carmody, k=1557)
- 74883796 3353292800 0000000001 (Dario Alpern, k=6974097)
- 76553987 9058946392 0640000001 (Phil Carmody, k=83)
- 86147338 1519317626 9531250001 (Phil Carmody, k=37)
- 90702496 4952417894 4000000001 (Phil Carmody, k=1007)
- 91137695 3125000000 0000000001 (Dario Alpern, k=3733)
- 96000000 0000000000 0000000001 (Phil Carmody, k=3)
- 99643241 2672000000 0000000001 (Phil Carmody, k=29)