Known 275-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 275-digit prime factors of googolduplex − 1

This is a list of known 275-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10440 4871487976 3924273647 0574810476 0891218628 1291034647 6413818328 7515571913 5597796355 6633802966 1892505828 2911777496 3378906250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  2. 10844 4914675207 5886477091 8058567364 7228780510 5769751720 2355986952 6713224857 1132809710 0953313243 1121096490 4387129936 1728705229 9502568947 3587749205 1445054630 8909763340 3913943897 6090069736 3296745033 5839022823 4200833101 0151794826 5126278784 0096279978 7521362304 6875000000 0000000001 (Phil Carmody, k=163)
  3. 11633 4801521977 4535499403 1912046017 0690549378 5359024758 9441281463 2541045398 3967611254 1918133406 2644195716 6009206670 4177695041 2533401490 4470900046 1421103029 8416560402 3303330905 0370007753 3721923828 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=113)
  4. 13292 2799578491 5872903807 0602803445 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 14096 7486602516 5097446883 2692469899 3394660283 5660276832 4343233352 6357069786 1723601818 0847167968 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=307)
  6. 17922 2840002400 8811657490 4474886757 8128999262 4591696134 3331215850 5943326420 2190431060 9761090602 0552168360 6377791875 2748519182 2052001953 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  7. 19968 0416634068 6132448437 9308720526 4386030378 8869714480 8247685432 4340820312 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=81)
  8. 32451 8553658426 7267831560 2057625600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 44698 3356057898 9300796551 4648407350 7565529751 6777242085 2146659719 9676042254 9278065647 6838468948 9977290577 3716047406 1965942382 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=137)
  10. 98225 4789383205 0628416889 8682490238 7028985151 8008425994 8174877152 3746796482 3531369085 8814378608 5337979766 6873349308 0551206452 7733212742 6767489425 9589925419 2314113608 6825732711 7914173724 4724397486 0862925080 3403465397 4231332540 5120849609 3750000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)