Known 270-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 270-digit prime factors of googolduplex − 1
This is a list of known
270-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1559311464 8467348827 7956068710 2285955168 4314212563 5312533876 3461369534 4831831855 9678407112 4411873865 4595059247 4588215040 8152312632 7973642461 8846598615 6244855872 7474174376 1104909270 5579418568 9949230814 1701987166 8869969590 6081266194 5760737580 7128846645 3552246093 7500000001 (Phil Carmody, k=3)
- 2724118530 7502746582 0312500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)
- 2868979276 5187718898 6963491357 7706723477 7709068046 6277725049 1351485375 4975381230 6501176757 1960423261 6774080267 5064129095 7645859590 0833837060 5825740457 0797489979 9660622919 6205804277 0166490716 6794471092 8830915480 6473344478 9453642442 8224563598 6328125000 0000000000 0000000001 (Phil Carmody, k=329)
- 2927345865 7108619718 2012256234 8842620849 6093750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 2946756685 3106586133 4630400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 3421638145 3125154075 0775305262 5434123153 7252122121 1634688274 9734679412 3625410359 5195268822 5174020370 7371969493 8089691932 3678039271 4660290752 5683783240 3947526220 4145087285 2376419164 2442256124 9230057001 1138916015 6250000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=697)
- 3835728174 1472671803 4414354289 5518179028 6315520000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)
- 6324196486 9220534626 7260862093 8725370291 6979477820 3365918243 1595454476 1848630480 5709041710 1043070385 9994578571 2688197614 1119512391 2420967826 6197443008 4228515625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=341)
- 6584357675 9221002919 7641318887 6904314383 8644027709 9609375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=199)
- 6867237629 9651454810 7093463356 3659710452 1112130962 6728597192 0788129888 1590008264 8540050748 6075481211 4618809150 9462011133 4790621359 2421418496 0753102157 9036545164 8123831456 5386233641 7951706502 6901659530 8371872161 1239388380 4543293081 2239646911 6210937500 0000000000 0000000001 (Phil Carmody, k=63)
- 7759126674 5002940297 1267700195 3125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=273)
- 8407790785 9489024255 4237749973 9496787681 5716512590 9463054240 9703338746 4961151636 0891982913 0172729492 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)