Known 263-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 263-digit prime factors of googolduplex − 1
This is a list of known
263-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 125 7125248366 5494541220 8154570923 8002187246 9361662361 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 221 4400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=173)
- 411 0941814839 0704518274 8528883162 4960091733 4825834489 2508794096 6945925644 0964163231 5042455991 7937017416 9889651238 9183044433 5937500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 547 6377146882 5231360000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 605 2471191346 0739973470 8212223649 7069586142 1723931201 9136067457 0750703500 0841467468 5632185409 8761318115 1799405282 9980138952 5876216466 0230613227 4166546637 3396942915 6727349371 9216837308 2390431250 1326785422 8615760803 2226562500 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
- 623 0756230241 7931542365 9559506411 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 657 1504133421 3656427441 3164079181 1198063306 2901695524 9255477914 5217921968 7413649138 9024573322 0753579506 5567185702 0934112370 0141906738 2812500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 794 0933880509 0656787655 2344387164 3394231796 2646484375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 834 5713839046 6981178964 0433848218 8905077020 7522050297 5551933788 2564558015 2151660577 4395218612 7218984456 7625680560 0260781086 1526616008 6321178823 7094879150 3906250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 864 0306491155 6116006015 2904784281 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=213)