Known 260-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 260-digit prime factors of googolduplex − 1

This is a list of known 260-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1486432242 6147729688 7198218890 0129810948 0199100671 5320293704 6856600671 6903439948 8871200664 3468716521 1181695785 2547585623 5438169630 8229906574 6439548173 3890434351 3116693172 5136023627 6650416895 0509878754 9286498688 1613731384 2773437500 0000000000 0000000000 0000000001 (Phil Carmody, k=127)
  2. 1550723494 8195045741 2684295764 2047115895 7302797730 8566321972 9144217600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=589)
  3. 2925129408 6901932359 4747787121 4772549903 6976371202 4008300953 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=233)
  4. 2979633561 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
  5. 4042554519 0207489459 4489033628 9406352097 2800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=297)
  6. 4503599627 3704960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  7. 4951760157 1415210995 9649689600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 7363640197 9465898296 4365793247 9413464462 8232687491 7434766732 3675780657 8820825737 8469014682 6055997928 4157753573 4769781776 9751877915 6370783542 1127223616 3445178379 6581966897 9289280841 2716476595 9605574607 8491210937 5000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  9. 9823662207 2076000716 6516601986 7382514746 9331178324 7178419119 5873280000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=597)