Known 253-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 253-digit prime factors of googolduplex − 1
This is a list of known
253-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 106 8218738048 7852979536 3997740501 3579911406 8955198802 2536827308 7899914103 4274453703 6571729956 6523432815 5151451725 7269676446 5339089628 4188332509 1522572611 0447210275 7490664659 5565007373 8070204854 0115356445 3125000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 151 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=189)
- 189 1695136850 5849067231 8498338929 6151817458 0371664734 1125104992 0047966483 4487709730 8862916218 8836303143 5328487593 6059110379 5279366295 2899467200 0408172607 4218750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 191 7614634881 9244348030 3591991651 3923037193 5595700974 8637169887 3901212990 1256702564 2972573595 2082793858 2748326426 2964004420 6218207197 1558214091 8547816756 3848536369 3220546335 6583552414 4915780198 0618387460 7086181640 6250000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 243 6002475322 4844551114 1780959324 3877230861 4716166630 3873062133 7890625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=193)
- 245 5692443516 8009097744 9455458270 2221523504 7042369842 5292968750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 319 0147189883 7980949691 3694467282 6982400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 320 9238430557 0931246620 6029057502 7465820312 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
- 343 7042236328 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=901)
- 420 9124715513 0004044266 1231822289 5096609085 7237708800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 928 1018112085 1181568000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=161)