Known 234-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 234-digit prime factors of googolduplex − 1
This is a list of known
234-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1273 1474852090 5380391777 8555255861 3506571677 4604121015 6647587780 8464883123 5208544136 4623360000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1334 9918974505 6880149688 8566355970 0716266903 2647290798 1216901004 8888873286 1290034376 4351304335 3600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1628 5118309637 7323490308 5862512739 3679576925 9333610534 6679687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 1856 9100589280 7041234868 6336000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2236 4160000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=273)
- 3442 5997755921 8408733756 0572370557 5818868566 9618500639 8991390597 0752239227 2949218750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=143)
- 3518 8381959254 1039325904 9337334162 3808846344 7935960544 8271958407 1997170465 8452592591 0598163277 9595433922 8518409788 6530518238 7640599524 3850953242 6625921305 0025750259 9692482903 0376713490 1136159896 8505859375 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 4274 2258444462 6814401507 7255411409 2074366395 8296520294 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=357)
- 7253 5549176877 7504823705 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 8061 2397330513 7850372379 4847139565 7284628952 7949501149 6429828293 3975777280 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=73)
- 8606 4994389804 6021834390 1430926393 9547171417 4046251599 7478476492 6880598068 2373046875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=143)