Known 229-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 229-digit prime factors of googolduplex − 1
This is a list of known
229-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 184889274 6611746418 9337388248 8153022579 6577582286 7726674303 4124374389 6484375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 186779039 1304602074 9210419200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=309)
- 332902256 5572840618 4276658189 9977735078 1512059137 1662161344 0554022750 2477148160 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)
- 339234636 4374497912 7999312014 2640355038 8769082001 1883995934 8390648182 9969920000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 408338840 3051261561 5604952891 8121853747 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 969882210 7772081366 4006881271 6841748709 3164471779 0269460715 4198309949 2747692178 8248703453 4081360494 1938114636 7559297979 8490660526 2555408884 4735882261 8826756922 7718922775 2387523651 1230468750 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=23)