Known 221-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 221-digit prime factors of googolduplex − 1
This is a list of known
221-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 0317059943 5914656846 7595905697 2007516550 9285470658 4736956141 5240138586 8462746486 7844537366 1816120147 7050781250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=589)
- 1 0629706422 2514797159 5693623821 9037720176 3038352494 9613813993 1956468905 2543225359 1699073493 1630060188 6794150841 2289563138 9495658472 3043262495 9555435158 3078151778 6385315105 2353496197 6110935211 1816406250 0000000000 0000000001 (Phil Carmody, k=413)
- 1 0995116277 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 1075584000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=169)
- 1 2963955056 9115594179 4993289427 7140391113 7676699739 2568630424 6162857793 8186326386 0791961847 1083923240 7362810675 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 1 3406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)
- 1 3558539748 4352304498 8530515412 8559458781 0877600423 1454785536 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 1 7191790696 7944737255 6786750514 4503931675 9117268206 4975030655 6966382230 5737070947 5653681357 1401203056 6400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=393)
- 1 7258531713 9373199132 2732327924 8625307334 7420361308 7737734528 9865110916 9111310323 0786753162 3568745144 7244734937 8366676039 7855963864 7744023926 8266930350 8074636827 3238984917 0209251971 7304242021 7825565487 1463775634 7656250001 (Phil Carmody, k=9)
- 2 3283064365 3869628906 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2 5881548800 4646142028 8033448353 8845446691 6586456389 4958185946 5839247360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3 2842932757 6129000997 7491210835 7409326881 1392627308 3840055628 7903666978 5004498578 4734308253 9737224578 8574218750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3 9231885846 1667547739 7368389504 7915100639 7215279002 1570560000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 5 7030225826 4099158651 5766958997 9860802486 6553023457 5271606445 3125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=353)
- 8 1667768061 0252312312 0990578362 4370749440 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)