Known 220-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 220-digit prime factors of googolduplex − 1
This is a list of known
220-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1005851624 8644816526 4363296955 7074829936 0275268554 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 1305637160 9604295988 7784420002 7194614549 2899324485 1917868236 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 1503067252 9752532658 4926758194 5175697520 4368313013 2471725266 6221780613 7760733494 0381676735 8966251969 9404383846 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1788139343 2617187500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4349630433 2642321881 4725662653 1899671493 9330675847 0495553393 9953193911 5206569113 0701452493 6676025390 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=97)
- 6052148151 7661920070 0606055938 2059080460 2479519434 9260819685 7866892142 8641019715 4991323129 6750323042 4278980593 1112693760 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 7951972413 8776837207 8426182270 0500488281 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=573)
- 8096408020 4010418362 9970487137 5374597921 2503416590 1379845972 2003283054 8154647753 6684828828 4505270212 4005130880 7451530962 2182905262 6549500252 9969104099 1945101268 3566659688 9495849609 3750000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 9050148298 2343569440 7034202300 1736295854 2526136850 3228154437 3641287689 2193907655 6230921428 0418879061 2477723665 2359680000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
- 9082254519 3206831859 7885074539 6264285554 3973571063 9325000085 1803972214 5893103998 3995727347 0316097718 7563110400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)