Known 219-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 219-digit prime factors of googolduplex − 1
This is a list of known
219-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 102084710 0762815390 3901238222 9530463436 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 130500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=261)
- 141234789 0462003171 8630526202 2172494362 3029975004 4077654016 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 155096364 8536926890 3838912976 3118035043 5897707939 1479492187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 167772160 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 192000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 229054234 3791118810 6797171021 1983190293 5968324961 9431697812 6376140800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=87)
- 256432293 7737962373 6136897170 0704495676 7977027548 8241680523 9238085535 3656470875 2175923200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 269350264 8395404453 9135502559 6318166998 4070512718 4352376575 5289885335 1835819880 7618870312 9600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=677)
- 305873646 9374308371 8954503637 1400666673 4920745969 8280692618 6083850143 2770905071 6690107325 5946275075 7006688218 0981338024 1394042968 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 326004446 8377616452 3032829447 1960504104 5711231330 0897482497 4136037678 0474693424 2413062313 2270594491 5803422878 1468760186 7611778383 4378371921 0478011518 7168121337 8906250000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 346776990 7376988125 5555611936 9675545448 4406263622 4410590912 3432515302 7388645789 0298018680 5230251003 8070591488 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=189)
- 370920615 0687421385 7317352615 4763951336 7564778757 7910024530 3905891758 1340095629 3589973120 8272320843 7536338919 1360011590 2704956738 4892725385 7254981994 6289062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 448335714 3482582868 7620742376 3184366103 6946352653 9920104908 3904000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=279)
- 554090712 1367973639 2267400140 8269569133 9338334909 2034376802 2875997205 4624116795 2422301311 9209319126 1988432061 1368960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 627710173 5386680763 8357894232 0766641610 2355444464 0345128960 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 684296217 6930307762 5881858058 0798146697 3720350997 4423090012 4729483271 6198344629 1657685601 8619236525 3305143405 7277808574 4640000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=53)
- 775726996 9915163094 9174360197 1577396787 5073668872 8848127523 2026396087 6473763513 3391221836 6893046776 6783804885 5916544000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)
- 812501695 2883651255 0799069452 8016212508 2616328408 6689486684 9179379642 0097351074 2187500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)