Known 217-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 217-digit prime factors of googolduplex − 1
This is a list of known
217-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1182641 3564752870 1601718645 5368556931 5398030433 5726181363 9524916652 5900363922 1191406250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=393)
- 1247985 7730508062 9814735050 2275473804 7753113307 4354998175 1854114519 2362754685 7646737504 1678223369 5380809978 2054060097 5899451339 1240979705 0102611137 8450877964 4966125488 2812500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=441)
- 1541406 7200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
- 1647945 7802966982 2194571416 6988800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 1688849 8602639360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2080625 0009554488 8910466367 0883374849 7390380354 8659491307 0490520112 7985492348 6709594726 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=177)
- 2426362 4769993453 3880228347 9040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 2650270 5971675764 9437494625 1114377773 7412258453 1342843718 2409301938 9296640000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4194304 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 6582018 2292848241 6861987673 0229402019 9309434625 3431945339 4436096000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 7959205 2516716848 0088036610 0229009988 6261073326 3402022692 5555267657 6357978424 3654350568 1783486752 9594429388 5404197683 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
- 8143387 4558661456 7521482139 1335424000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=803)
- 9883310 5717786155 2282678817 3065642819 7280887959 7047582819 7902836038 8852727841 4961773472 6909796472 4272467200 7821596107 1316141241 7757018432 9260216191 5273370484 9467244457 6281122863 2926940917 9687500000 0000000000 0000000001 (Phil Carmody, k=3)