Known 217-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 217-digit prime factors of googolduplex − 1

This is a list of known 217-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1182641 3564752870 1601718645 5368556931 5398030433 5726181363 9524916652 5900363922 1191406250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=393)
  2. 1247985 7730508062 9814735050 2275473804 7753113307 4354998175 1854114519 2362754685 7646737504 1678223369 5380809978 2054060097 5899451339 1240979705 0102611137 8450877964 4966125488 2812500000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=441)
  3. 1541406 7200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
  4. 1647945 7802966982 2194571416 6988800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  5. 1688849 8602639360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 2080625 0009554488 8910466367 0883374849 7390380354 8659491307 0490520112 7985492348 6709594726 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=177)
  7. 2426362 4769993453 3880228347 9040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
  8. 2650270 5971675764 9437494625 1114377773 7412258453 1342843718 2409301938 9296640000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  9. 4194304 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  10. 6582018 2292848241 6861987673 0229402019 9309434625 3431945339 4436096000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 7959205 2516716848 0088036610 0229009988 6261073326 3402022692 5555267657 6357978424 3654350568 1783486752 9594429388 5404197683 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
  12. 8143387 4558661456 7521482139 1335424000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=803)
  13. 9883310 5717786155 2282678817 3065642819 7280887959 7047582819 7902836038 8852727841 4961773472 6909796472 4272467200 7821596107 1316141241 7757018432 9260216191 5273370484 9467244457 6281122863 2926940917 9687500000 0000000000 0000000001 (Phil Carmody, k=3)