Known 216-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 216-digit prime factors of googolduplex − 1

This is a list of known 216-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 156444 3629824885 3142541662 8869840242 7687527726 3354390404 8855586510 4164838218 2425903488 4918476800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 179799 7581631531 4907863172 8573227414 6419671040 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
  3. 181983 8454778243 0193005370 9474099215 5547252707 5930275840 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  4. 211562 0184325601 0557358080 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  5. 224819 6933983351 6032000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
  6. 265100 4508368846 3672433712 8691033292 6491447423 8752171987 0107567790 0411703299 0733459443 6049465155 4000823667 7671504821 7738512903 4519195556 6406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=213)
  7. 459381 1953432669 2567555572 0032887085 4656000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  8. 585586 1513778829 6972748719 9254139337 0688892611 6125069282 0725743035 3039524124 6086485078 2569405440 9913143681 6463429569 3475481368 5752103342 1508667809 3479947201 2330934234 1144656529 6500921249 3896484375 0000000000 0000000001 (Phil Carmody, k=711)
  9. 676921 3120412145 6532676127 5425557544 7842863953 5542396854 7480366360 9915302259 8281812499 3751490268 4516839334 0111362391 8903558144 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  10. 809896 7743065310 9887314889 4539945951 6711903088 6652758899 1893504000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=63)