Known 215-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 215-digit prime factors of googolduplex − 1
This is a list of known
215-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 14540 2842050336 8959734898 0915292315 7853365410 1192951202 3925781250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 15813 2969148457 8483652286 1076905028 5115649420 7355276132 5116644537 6622164364 5463938837 5563055674 3558835947 5212514553 7714105825 9868411229 4926816345 9064437392 7759147591 1322049796 5812683105 4687500000 0000000000 0000000001 (Phil Carmody, k=3)
- 18932 6617253042 8332988148 5566786869 5121569544 4261655211 4486694335 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 28060 8314367533 3602951074 8788152633 9773939048 2513920000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 28610 2294921875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 28858 8912571248 6270430593 7573347373 3923923871 6098543457 1251191458 1877845006 0830855328 1933292152 0378228564 1698508800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 30050 3547228863 3874463211 0795415146 6318312617 4335989156 9384343908 8758329341 0874308961 7478090752 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=461)
- 35527 1367880050 0929355621 3378906250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 85439 4814368364 0329580086 8246782084 5841081808 9426611079 7881664312 8887890312 2562200091 8483477463 0400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 89567 1208097257 7659215106 1679046656 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=69)
- 96219 5295633190 4326105931 2817453347 6373470876 8378175312 6629749717 7743510755 3669291213 7937128136 4001333713 5314941406 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 99026 5931959932 3354011520 5525240965 8355430591 5077318374 2352744646 4838859580 5169528422 2466612606 5557580915 3106092708 1853151321 4111328125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=777)