Known 195-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 195-digit prime factors of googolduplex − 1
This is a list of known
195-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10418 9081567535 0713172548 7576981314 4955940503 5520000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=73)
- 10783 9786668602 5591786680 6034807852 2694548577 6901622899 2441444099 6864000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 11438 3329197220 7177877862 7049177885 0555419921 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=211)
- 11657 3417585641 4367444813 2514953613 2812500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 14149 4985606667 3807423299 8892012174 6573164549 9709240342 1222835765 5242208103 0132049178 0517893688 9970303968 0068640137 1608837316 7701144894 6146288108 1388331949 7108459472 6562500000 0000000000 0000000001 (Phil Carmody, k=1)
- 18133 8872942194 3762059264 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 18201 2050164972 0751614347 4625117361 9621615397 5403947899 7981505029 3746199446 3821543684 3667237481 9574484974 9606400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 22476 5895622751 4406594750 0054510797 4013899066 2718779228 6185930109 3026765195 0231246486 6203942057 1421923507 5390407412 7684847225 4248908756 5420528926 7200000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 23111 1620817474 9421569833 8339989021 5250742367 1808916885 2476995826 0987174209 0382043308 6614911465 0902898041 8060222464 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=961)
- 23923 0548023141 9292282424 3109098983 6835502906 5039451102 3406866007 6088609287 4317416025 7175373689 6512000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 26596 3541825662 7346828835 2067596939 3184288240 0756417650 0865098047 8658621957 6061716270 4629722047 3180575444 7389345710 0800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 30064 7710720000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 31901 4718988379 8094969136 9446728269 8240000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 43153 7336426274 2853958103 1308379293 4799982577 0390827799 4901873355 5132100519 0640465546 8351657504 6137948507 5432099352 4830101831 6800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 48021 3202536106 1096191406 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 50925 8994083621 5215671114 2210234454 0262867098 4164840626 5903511233 8595324940 8341765458 4934400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 50936 8577986361 3088969661 2456791357 7675031865 5696724966 4526833158 5792013109 8692646669 9468834020 5506744982 3751416713 3749582104 8821333150 9248000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=219)
- 53480 2455750246 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 56543 5930163662 4454923818 3399442479 1629087989 1192560023 1747927422 7441394657 7354752000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=763)
- 57468 5827824708 3218843801 3518136594 3857027170 8188508160 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 65161 9465395210 2190392976 1491280412 1795497178 8807903181 5736508616 4877731861 5743830725 7109089091 1506585735 5483078632 2207149243 8704660603 2993966753 4169568706 5600000000 0000000000 0000000000 0000000001 (Phil Carmody, k=243)
- 69119 8557808156 2539099796 7134577917 9520000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 70673 8825911353 7318333190 0029716740 6330993558 7502475832 4864248051 7047910400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 85070 5917302346 1586584365 1857942052 8640000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)