Known 192-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 192-digit prime factors of googolduplex − 1
This is a list of known
192-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10 3762935414 6162278400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 10 5892891652 8101628829 9992026913 5962101151 7992893758 8792011103 8523910377 2608987535 1817584056 0003210784 6678127239 4956800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)
- 11 4230471406 9549578988 9096522806 2835682348 3292162277 9469238731 1823417320 7256346005 5859269556 3982801221 6637614379 2403631497 5436800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 14 3051147460 9375000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 14 5933368357 5225555941 3334859328 7697496363 4644291951 3375832741 4859672064 1065823615 9747279917 0978151137 2800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=417)
- 16 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 17 3499797644 5682480411 4788816120 4252516527 6364800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=389)
- 17 6520987759 8472668710 1009964864 3389846757 2319316852 0107240835 4451020833 5363075035 3913591282 1884422070 8136933965 7453568000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 17 8484739163 3958525895 2942077611 6223649005 3178037259 4064425604 9938824122 7683390573 5518655065 7197818429 4097040961 7850230896 5171687992 6327391269 2473556899 1485952000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 19 7706172611 7615597914 7874301354 4124657359 7366441271 9579056054 7624543643 6818524943 0112971765 1049891183 3461337680 7464871146 9113254391 8393418021 3201478411 3645977600 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 20 5054755448 4073679099 2208379227 7003001859 6341462386 6591491599 4350933093 6749414928 0220436034 5911296000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 23 9808173319 0338127315 0444030761 7187500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 27 7901014169 5588690165 7036402085 0978847847 9631975373 5369469820 1618991511 1358464000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 30 4931861011 5481220645 9610024467 1106338500 9765625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 31 4572800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 31 9014718988 3798094969 1369446728 2698240000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 33 0805778503 4179687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 36 5773902796 0110428058 3093932746 6630563717 6058722252 7328256419 1937463002 1873981537 5253343523 5753944692 0497994142 3516720533 3709716796 8750000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=287)
- 42 3714158772 0818396891 7864718031 8868613627 9040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 48 1036337152 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 76 8027216894 3863274579 0442400293 7763808017 3201650690 5366796475 6427486305 1898880000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=849)
- 91 9497324519 5333150150 0821629018 5510171243 4733101613 0560000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 93 6748722493 0631680000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)