Known 191-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 191-digit prime factors of googolduplex − 1
This is a list of known
191-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 0291200000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=201)
- 1 0485760000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 2141680576 4108066932 4663691764 6993166515 0427440758 7200782382 7560868151 7825325531 1360000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 3738115390 9104874311 1463742753 3060384765 7659039744 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
- 1 4841515344 1384283684 9969900624 0515532950 8647337551 9924822149 2090858006 1184000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 1 5379106658 6305525932 4415628442 0775225139 4725609678 9994361869 9576319982 0256206119 6016532702 5943347200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 1 6636018164 7248891574 7048510485 8502220618 6224522548 9945102287 7483687727 8468337537 3823984643 6624837468 5843472657 6842143097 3844946944 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1 6784659228 8302991727 4415087495 5203353390 3950894104 8546361565 9220144133 0241730014 2424064000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 1 7125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=137)
- 2 1266911999 0276970762 8713112796 5945457912 3248469051 1596522800 6787447844 9707096532 8706958532 7120039053 5263209682 6458261847 5239334315 1514436491 0182400000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=109)
- 2 4036211310 5655929515 1474883689 5643337578 7119518001 9721417729 9697246568 9834110518 7033085584 4625020943 0640232302 2121732544 0855499998 5068828876 0845777794 4837019390 4338520951 5690803527 8320312501 (Phil Carmody, k=57)
- 2 6247008697 3961430924 7002672541 1456384238 0331707185 4923710924 7276919435 9903925110 7868215812 4276645888 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 6784130469 0819015377 2011399269 1040039062 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=193)
- 3 8029518006 8468820449 0109616128 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 5 7586096570 1529136999 7489289838 0567793532 1231142645 3290368967 1329431521 0325950447 4008372078 2129802971 5189876561 0906745757 7065805510 3270360193 0899431507 4097345724 4160000000 0000000000 0000000001 (Phil Carmody, k=1)
- 6 0137205977 0744020381 6207051090 8342273341 9298023635 9570414359 3573608969 4222104330 7008621070 5085250083 3570957183 8378906250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 7 3662295489 2110708806 5891782312 6899459936 2334448939 0121934133 6642474016 5517416857 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=497)
- 8 7417429607 6890709894 8273782335 9245577207 8428617839 3024039485 4400000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 8 8434366004 1671129639 5624307507 6091608227 8437318275 2138264272 3534526380 0643832530 7362823683 5556231439 9800042900 0857255523 3229813215 5591341430 0675867707 4685692787 1704101562 5000000000 0000000001 (Phil Carmody, k=1)
- 9 6976925569 8432000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=441)