Known 175-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 175-digit prime factors of googolduplex − 1

This is a list of known 175-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10773 9860693266 1540960755 0027383019 3998264912 0676789557 3267111477 7234395468 9376852655 8588429070 0941205330 6234109952 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  2. 14334 3663499379 4694756763 0595638043 3799785311 8230175702 3359930246 1682679755 5303005043 7615956938 2855409664 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  3. 14953 8149525803 0357016782 9428153876 4800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  4. 15360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  5. 17804 1895232996 2265151232 9255428669 6641643109 3803739681 1774587482 8043904324 5902092318 7097997071 4005001744 2681185280 5563329837 9234474850 8185148239 1357421875 0000000000 0000000001 (Phil Carmody, k=3)
  6. 23622 3201280000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  7. 25831 4883593197 6798761298 5405458848 7700651756 1006662328 5154818745 4682192765 1762962341 3085937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=879)
  8. 37739 6242482154 1352241554 5809882688 9091692122 0416440428 3762063002 4562416239 2148852086 1267251776 5876754146 8375030763 8448997705 8462992479 2632561434 2514326960 4364939532 6976000001 (Phil Carmody, k=1)
  9. 46179 4883665920 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  10. 47764 2368103929 3061222303 1316083761 9894738686 7457673266 6276253403 2641659764 7360000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  11. 48339 8437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=99)
  12. 52148 1209941628 4380847220 9623280080 9229175908 7784796801 6285195503 4721612739 4141967829 4972825600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)