Known 174-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 174-digit prime factors of googolduplex − 1
This is a list of known
174-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1070 4357695294 6991079371 4477087121 3522870599 6800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1073 6142606448 2567976909 8769611446 1869001388 5498046875 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=507)
- 1323 4889800848 4427979425 3907311940 5657052993 7744140625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1329 9692649578 4960000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=189)
- 1871 8750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=599)
- 2412 4754361816 0506930229 2850591919 6116120989 5913460955 2656968757 5446643279 5197761151 9396305084 2285156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=269)
- 2639 9931169607 3680477436 8974159674 4246587169 4188615347 7335173428 8078669678 8133299068 7475630812 0469615673 4026434313 3283723876 7616000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 2938 7358770557 1876992184 1343055614 1945466638 9193021880 3771879265 6960431486 3681793212 8906250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3033 8990275609 7364022322 4430340114 9935619192 5226191287 3048997888 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=59)
- 3098 6998537042 9030758710 3006403614 2491956469 5139506821 5396791227 8487771464 2020943355 5574423936 1653977230 8380636729 6992051200 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 3342 4381060705 2674222763 5404800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 3850 4600524902 3437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=323)
- 4315 5051959568 2766066192 0010466073 1010668620 7242005611 8947698580 9861138917 4444399325 4311156874 9713009313 4474958223 2515490667 2815790481 2560741553 9302400000 0000000000 0000000001 (Phil Carmody, k=27)
- 4472 3339615027 0579028074 2803588509 5596313476 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 4591 7748078995 6057800287 7098524397 1789791623 3114096688 0893561352 6500674197 4502801895 1416015625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 4963 0836753181 6604922845 2152419777 1213948726 6540527343 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 5198 7556764765 2786170952 6595268281 9439433195 1632965607 8444649213 6524149521 3554804319 9952011445 2617089326 0852055263 1697179326 5459200000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 5222 6802319360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 6304 3209914231 1667396464 6416022978 2088127582 8327447146 6871726944 6793154834 3955369782 6282600781 5865025290 6047844909 0560000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 7442 5390312072 0182859477 7570332083 2704348309 7500336599 2649101503 9105984977 1240278546 9194260019 5225703241 8556895818 7887049526 1745097727 9655584025 8512095300 3619123200 0000000001 (Phil Carmody, k=847)
- 7860 4657505199 0714655403 2806307077 4078369140 6250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=29)
- 9338 6447021515 1023062117 7196697196 5876766915 2580632576 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)