Known 171-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 171-digit prime factors of googolduplex − 1
This is a list of known
171-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 0935229886 8950221979 6480000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=741)
- 1 1322784501 9175010918 3868494475 5320636727 8193219571 2665782258 9509110896 4101415270 2431581996 1900348044 7512536568 9761530312 0843715995 7626880000 0000000000 0000000000 0000000001 (Phil Carmody, k=997)
- 1 1373703768 8716620067 3701158101 1631099836 4810406447 0466941400 7153331755 5958367548 0076226852 0519879884 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 1 1493716556 4941664376 8760270362 7318877140 5434163770 1632000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1 1529215046 0684697600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 4398341720 9374954037 4132146830 3888248904 6914527811 9955480387 6616967603 3745972176 8027520738 5420799255 3710937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=411)
- 1 5716552734 3750000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=103)
- 1 6313261169 9963113167 7573527314 1368889252 9106451724 1636939659 1138674308 1114937155 6805724031 7134670704 0356704965 2338027954 1015625000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2 4104070663 8848541331 2943138511 7439037833 0449067418 9252952064 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 4632199568 2096750748 3118408126 8056995160 8544470481 2880041721 5927750233 8753373933 8550731190 4802918434 1430664062 5000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 2 5579538487 3636066913 6047363281 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 3 0680402556 4617039579 8402362150 0612191067 1710317514 8431137841 9533866690 4717683792 1142578125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=261)
- 3 6226340129 2186349974 1956813663 5603863661 8686991688 3097830182 5668664846 5492396637 2838943699 4444328960 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=53)
- 4 5833309467 5259369410 4002798921 1008623658 0388574835 6563931316 0110473579 2446750758 8912644096 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 5 2999307931 9053430191 1875584000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=137)
- 6 1047779875 8178001470 8326836758 3018800190 3737751546 4957572195 3991086945 5618871115 5801449871 4863250582 3478422435 3575154964 3464386463 1652832031 2500000000 0000000000 0000000001 (Phil Carmody, k=981)
- 7 2882441422 1083535953 1102190564 5388777883 7107461192 8202251625 5803320565 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 7 3432423930 2309560466 4706315816 4482458199 3881681563 9210803067 0142840361 1989146161 1019932216 1664321638 6730953528 0592272265 7987461120 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=339)
- 9 3941703310 9533291155 7922387157 3481095027 3019563327 9482829163 8861288361 0045843377 3854795993 5390748121 2773990400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)