Known 165-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 165-digit prime factors of googolduplex − 1

This is a list of known 165-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 13387 3549979510 7073074575 3067681152 4600483420 9366016000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=229)
  2. 14047 4393367927 8272772820 0295696384 5963535995 1299097590 9798786899 5811230637 7161609878 5270721843 9498030113 1325553174 6363965440 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
  3. 15192 9083932156 7799595718 7631299131 4467535453 3379191194 6047647985 3264131690 3169785445 2990290834 2617601488 4421278106 0747374795 0280085206 0317993164 0625000000 0000000001 (Phil Carmody, k=1)
  4. 15875 1886864809 9840000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=141)
  5. 23413 1141273699 4173536197 9223448747 2931144860 6998728363 1443677197 1902880411 4824215090 2295772976 1897836987 0198341054 9671715859 8175946621 3979717632 0000000000 0000000001 (Phil Carmody, k=3)
  6. 23975 0288664268 2033701066 6724811517 2281492337 3566697843 8598325449 9228549541 3579996252 3950871527 6183385074 7083101240 2863837040 4532169340 3115230855 1680000000 0000000001 (Phil Carmody, k=3)
  7. 33022 2981359453 7590898911 8500044800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=521)
  8. 33715 0309040719 0410161878 2387223269 3352236673 2905233832 1968930833 2595609600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=977)
  9. 38360 0461862829 1253921706 6759698427 5650387739 7706716550 1757320719 8765679266 1727994003 8321394444 1893416119 5332961984 4582139264 7251470944 4984369368 2688000000 0000000001 (Phil Carmody, k=3)
  10. 45652 7189673046 3316660735 4810352694 3060965607 1772527874 9417591628 8642507023 2239970713 6000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
  11. 89605 5864795677 8697553382 5691193059 0007848489 9723342961 9077463617 7381872377 2983773505 6990470806 1645667877 5461677250 2248368562 6070276505 6000000000 0000000000 0000000001 (Phil Carmody, k=789)
  12. 93248 1068268349 9540413417 1527528907 5188355282 7450269702 0086995667 4674056898 5000791244 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  13. 96857 7498541313 5594224818 8796999002 9940917054 2250477014 3848559782 4623596352 4668477475 6431579589 8437500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  14. 98079 7146154168 8693493420 9737619787 7515993038 1975053926 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)