Known 155-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 155-digit prime factors of googolduplex − 1
This is a list of known
155-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 14699 7491837372 9894400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
- 14935 2366668667 4009714575 3729072298 1774166052 0493080111 9442679875 4952772016 8492025884 1467575501 7126806967 1981493229 3957099318 5043334960 9375000000 0000000001 (Phil Carmody, k=3)
- 16653 3747176716 2176369210 2582610410 6869021664 0924409211 6496244835 1890806892 0878179796 8636594708 0373995051 3600549896 1861259392 7926771919 3715880888 4110950401 (Phil Carmody, k=407)
- 20024 8784617585 3202245332 8495339551 0744003548 9709361971 8253515073 3333099291 9350515646 5269565030 4000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 28823 0376151711 7440000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 41168 5996183058 5903502029 3806156506 8286242176 9518012450 8131280812 9658971782 9792925089 7539981834 2644555900 6470035492 0234516608 2953707520 0000000000 0000000001 (Phil Carmody, k=29)
- 46031 4346223671 3126663381 9697071005 7365633779 5860306946 5862903042 0312968922 4632549188 8500368341 4665794259 2552960000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=49)
- 47428 4397516047 1364549467 5459558567 0566993857 1904637503 0561826409 6412179005 1778560000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 48495 7635911444 4416309534 2919106827 5780373167 0546378293 1784092369 1619108355 4917955141 3945008342 9635383951 1072719714 5905620345 7294031977 6535034179 6875000001 (Phil Carmody, k=399)
- 56843 4188608080 1486968994 1406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 66736 1860321012 4500370748 0638365800 9699073953 0977881744 6018380247 0592516576 5671352946 4470738101 5874653554 6427801600 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
- 67192 3422653341 2631672326 8417053328 3436493649 1703948604 6999673028 9137561354 0482836142 6324798148 2134732800 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 77758 1087176129 4851710124 0320000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=201)
- 80712 3258389582 8935352255 9291276635 8108782095 8576953221 3378129922 0465699604 8089485178 1510920057 0156007907 3488039938 5220428598 5862952657 0439338684 0820312501 (Phil Carmody, k=17)
- 81562 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=261)