Known 151-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 151-digit prime factors of googolduplex − 1

This is a list of known 151-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 1 0221169560 4069718983 4986604842 5063764348 0816346654 1022270845 5925977739 9890946582 9677456165 0662300140 6982229600 8811812719 0330335402 3936000000 0000000001 (Phil Carmody, k=9)
  2. 1 0231815394 9454426765 4418945312 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  3. 1 0583459124 3206656000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
  4. 1 2049614286 2582165862 6535562746 6585410980 9077792682 2119535605 4835823460 0531558400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=333)
  5. 1 4334366349 9379469475 6763059563 8043379978 5311823017 5702335993 0246168267 9755530300 5043761595 6938285540 9664000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  6. 1 5055683914 7494002996 2582977788 2271526478 6530026540 8128970154 6175476508 2103403658 6086400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
  7. 1 5118284881 9200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
  8. 2 9642774844 7529460284 3417216222 4104410437 1160744039 8439410114 1506025761 1878236160 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 3 3631163143 7956097021 6950999895 7987150726 2866050363 7852216963 8813354985 9844606544 3567931652 0690917968 7500000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  10. 4 4841550858 3941462695 5934666527 7316200968 3821400485 0469622618 5084473314 6459475392 4757242202 7587890625 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  11. 4 5692188562 7819831595 5638609122 5134272939 3316864911 1787695492 4729366928 2902538402 2343707822 5593120488 6655045751 6961452599 0174720000 0000000000 0000000001 (Phil Carmody, k=27)
  12. 5 3169119831 3966349161 5228241121 3783040000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 6 9722357926 0981739529 6895521718 3443000215 5756707157 4616162270 0717362455 4330899381 6532856401 4547820871 2605696000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  14. 8 1230557444 9457478392 1135305106 6905374114 3674426508 7622569764 3963318983 6271179381 7499925017 8832214202 0720081336 3487026842 6977280000 0000000000 0000000001 (Phil Carmody, k=3)
  15. 9 3941703310 9533291155 7922387157 3481095027 3019563327 9482829163 8861288361 0045843377 3854795993 5390748121 2773990400 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)