Known 145-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 145-digit prime factors of googolduplex − 1

This is a list of known 145-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11654 8232544256 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=53)
  2. 13452 4652575182 4388086780 3999583194 8602905146 4201455140 8867855525 3419943937 8426177427 1726608276 3671875000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  3. 14210 8547152020 0371742248 5351562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  4. 15225 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=609)
  5. 16777 2160000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  6. 17397 7154907870 6833829666 4248654633 0659842209 9158630400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
  7. 20194 8391736579 0221854025 1271239327 4796340847 3879098892 2119140625 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  8. 25973 6023567982 6660192346 3947021753 7135688869 9185689768 2556025951 1181918654 9258908827 9218977148 7641600000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
  9. 27704 5356068398 6819613370 0070413478 4566966916 7454601718 8401143799 8602731205 8397621115 0655960465 9563099421 6030568448 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  10. 28557 6178517387 3947472274 1307015708 9205870823 0405694867 3096827955 8543301814 0865013964 8173890995 7003054159 4035948100 9078743859 2000000000 0000000001 (Phil Carmody, k=27)
  11. 30828 5501624487 3343085897 6940109094 9458673270 7840000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
  12. 30995 1962229929 9150187389 7018968600 8895805302 2582759110 1853523163 4811854118 3805957930 8756602555 8743376677 7394339442 2531127929 6875000000 0000000001 (Phil Carmody, k=19)
  13. 31691 2650057057 3503741758 0134400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  14. 37909 6928140187 7213199175 3325417423 1096519642 0589982256 8657242527 4789566174 1495132446 2890625000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
  15. 47276 8468656711 1648019768 1435695153 1746747384 1239904582 5618183630 8011085629 0614895583 1967274330 3799648457 0662136834 8285274232 7249403934 1989888001 (Phil Carmody, k=397)
  16. 58802 1518660555 6305770840 0640000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)