Known 143-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 143-digit prime factors of googolduplex − 1

This is a list of known 143-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 180 5559322863 0336122399 7932117336 9361129470 2952019264 3303744262 0843648910 5224609375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  2. 250 7942042491 9449600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=891)
  3. 270 2159776422 2976000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  4. 329 4766441214 8365042794 0739397268 8065665521 9990324286 2804307384 6917181667 7080336129 0649600000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=53)
  5. 406 5758146820 6416275279 4800326228 1417846679 6875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  6. 808 8905766426 3905828351 0735885669 4737860026 9225046304 2000774294 1379547119 1406250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  7. 893 6014621133 8432354804 2400281557 8454355576 6410680156 1481802333 3789390400 3307321559 6459704102 0169854164 1235351562 5000000000 0000000000 0000000001 (Phil Carmody, k=653)
  8. 976 5625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  9. 994 7598300641 4026021957 3974609375 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)