Known 139-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 139-digit prime factors of googolduplex − 1
This is a list of known
139-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 110968694 8184090214 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=77)
- 118842243 7713965063 9031592550 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 152984216 5213144917 6384804824 6176005121 2487253503 2581689173 0562797584 0858310721 1689624858 7836800670 0805689486 5167900567 2204140544 0000000001 (Phil Carmody, k=113)
- 195300824 2310688535 2098723037 6249131190 8095322427 2163802973 9965581851 3071148099 0670533322 3424000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=767)
- 246262538 7274654950 7674400062 5897586281 7483704404 0904167467 6833776535 7610718575 6632133916 4093030722 7550414249 3941760000 0000000000 0000000001 (Phil Carmody, k=1)
- 362677745 8843887524 1185280000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 364418599 0646338184 2342969344 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=471)
- 387740912 1342317225 9597282440 7795087608 9744269847 8698730468 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 487890977 6184769953 0335376039 1473770141 6015625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 496308367 5318166049 2284521524 1977712139 4872665405 2734375000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 507813559 5552282034 4249418408 0010132817 6635205255 4180929178 0737112276 2560844421 3867187500 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 549998566 0334868343 2799353628 3265505137 2326962262 8197444482 7797668305 6183086110 3972655742 3085843116 9931958884 0481943410 9140992000 0000000001 (Phil Carmody, k=13)
- 774861998 8330508475 3798551037 5992023952 7336433800 3816115078 8478259698 8770819734 7819805145 2636718750 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 882401818 8634967401 0560222414 6379208296 9921079460 0720172069 1589120000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)