Known 135-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 135-digit prime factors of googolduplex − 1
This is a list of known
135-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 10037 3404249634 5901795962 1633053757 2503089904 7851562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
- 11257 5172322514 2687486391 0912000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=291)
- 12993 6005922504 2918114008 4106039869 4813318757 7004055144 1694720000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
- 13292 2799578491 5872903807 0602803445 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 17240 5748347412 4965653140 4055440978 3157108151 2456552448 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 19471 1132195056 0360698936 1234575360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 19830 2498792377 6798720000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)
- 21341 2598038681 1401168234 4255405041 6219979524 6124267578 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
- 23283 0643653869 6289062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 24682 5683598180 9063232453 7738360257 5747410379 8450369795 0229135360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 29152 9765688433 4143812440 8762258155 5111534842 9844771280 9006502321 3282263040 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 30948 5009821345 0687247810 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 35766 6015625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=293)
- 39231 8858461667 5477397368 3895047915 1006397215 2790021570 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 49928 9948160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
- 54043 1955284459 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 67337 4129332913 4631004718 7671143871 2489155700 4229934733 2919446735 7714971680 8605329099 1177681688 0882533316 3963187200 0000000000 0000000001 (Phil Carmody, k=7)
- 97964 0383856375 6814766522 3711457280 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=483)