Known 135-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 135-digit prime factors of googolduplex − 1

This is a list of known 135-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 10037 3404249634 5901795962 1633053757 2503089904 7851562500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
  2. 11257 5172322514 2687486391 0912000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=291)
  3. 12993 6005922504 2918114008 4106039869 4813318757 7004055144 1694720000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=207)
  4. 13292 2799578491 5872903807 0602803445 7600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  5. 17240 5748347412 4965653140 4055440978 3157108151 2456552448 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
  6. 19471 1132195056 0360698936 1234575360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  7. 19830 2498792377 6798720000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=43)
  8. 21341 2598038681 1401168234 4255405041 6219979524 6124267578 1250000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=129)
  9. 23283 0643653869 6289062500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  10. 24682 5683598180 9063232453 7738360257 5747410379 8450369795 0229135360 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  11. 29152 9765688433 4143812440 8762258155 5111534842 9844771280 9006502321 3282263040 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  12. 30948 5009821345 0687247810 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 35766 6015625000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=293)
  14. 39231 8858461667 5477397368 3895047915 1006397215 2790021570 5600000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  15. 49928 9948160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=93)
  16. 54043 1955284459 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  17. 67337 4129332913 4631004718 7671143871 2489155700 4229934733 2919446735 7714971680 8605329099 1177681688 0882533316 3963187200 0000000000 0000000001 (Phil Carmody, k=7)
  18. 97964 0383856375 6814766522 3711457280 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=483)