Known 131-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 131-digit prime factors of googolduplex − 1
This is a list of known
131-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1 0100611939 9937019465 0707815067 1580687337 3355063449 0209993791 7010365724 5752129079 9364867665 2253213237 9997459447 8080000000 0000000001 (Phil Carmody, k=21)
- 1 2052035331 9424270665 6471569255 8719518916 5224533709 4626476032 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1 2396212017 5328186859 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 1 2840636465 4583265671 0411864545 8645308055 4508479836 9792000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=429)
- 1 4615016373 3090291820 3684832716 2830196559 3254297600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1 8223098540 4696957613 5219525793 1153901334 9088952320 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=399)
- 2 2765651080 7702625498 3744422058 8112187215 7051451422 6001466967 6676627784 5922485370 8800000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 2 4519928653 8542217337 3355243440 4946937899 8259549376 3481600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 2 6843545600 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3 1082702275 6116651347 1139050917 6302506278 5094248342 3234002899 8555822468 5632833359 7081600000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 3 6246767418 9488275566 0825759212 4300980844 8382741977 0582149149 6471483857 3327640355 4292210821 4942959505 5076597332 7052800000 0000000001 (Phil Carmody, k=471)
- 4 4558128101 0007880154 4836761324 8344517853 8457765615 1097801183 9611441939 2689392284 0626730500 3082746398 4903078249 7587200000 0000000001 (Phil Carmody, k=579)
- 4 9806208999 0157893632 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=27)
- 6 6613381477 5093924254 1790008544 9218750000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 7 1835728478 0885402355 4751689767 0742982128 3963523563 5200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 9 3808296352 3759761085 9393867042 1915747133 8432551241 3542705129 6936828214 3935805590 2365508509 9630007157 6324199193 2246753280 0000000001 (Phil Carmody, k=93)