Known 129-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 129-digit prime factors of googolduplex − 1
This is a list of known
129-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- +99999999999999999999999999999999000000000000000000000000000000009999999999999999999999999999999900000000000000000000000000000001 ()
- 102844034 8325753776 3468557390 9834406561 4209916020 9874145928 8064000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 106944388 7575605195 2909339864 1492353455 2020906674 6165315839 7373591105 0182375751 7707462836 2240000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 149538149 5258030357 0167829428 1538764800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 153827876 5180973020 5528707023 0143314786 2752548462 5948593020 4391479492 1875000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 189346812 0922164912 0103339591 9139934449 0491785109 0431213378 9062500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=293)
- 199384199 3677373809 3557105904 2051686400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 204895594 6703448624 3946931466 1349193119 6422976113 0835085638 7437894041 6000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=19)
- 207052390 4037169136 2304267586 8310763573 5332691651 1159665487 5726713978 8800000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 207144357 2677604652 0658105096 5852991731 3777296673 1313892556 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 208961627 0001167216 1614655546 0192293496 5126607726 2603188441 4022493645 6462501155 3289368748 6648559570 3125000000 0000000000 0000000001 (Phil Carmody, k=233)
- 224759029 3886845236 4365120473 1142153541 6575922078 5561455678 0590393297 9690203458 5758056433 1549503196 8481810120 8850794182 3447040001 (Phil Carmody, k=17)
- 256904584 6870727785 9049147450 0909124548 8943923200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 385937500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=247)
- 406575814 6820641627 5279480032 6228141784 6679687500 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 421249166 6742287467 9167211073 4681729275 5803816021 9644501724 3910144000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 498150793 7202869854 1800824862 5760406781 8829280726 6577894342 6560000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=31)
- 506590390 4132583549 7812305941 3009596858 0561829121 7746767262 6930034619 9421747200 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 529079673 0472891495 7894218884 4701845527 1937646180 6630047293 8510066776 0491778189 9014350211 0356120693 4190343113 9328000000 0000000001 (Phil Carmody, k=11)
- 542233395 1354077184 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=301)
- 582076609 1346740722 6562500000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 793267162 5482983187 4229836963 9325247794 0856195571 3746314157 8554329286 9494835736 1499022705 2527658341 8171094544 3002802996 5107200001 (Phil Carmody, k=3)
- 858306884 7656250000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)