Known 127-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 127-digit prime factors of googolduplex − 1
This is a list of known
127-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 1091136 8250965128 6715114308 3331020138 7365422549 9472474931 2000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=89)
- 1117587 0895385742 1875000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 1284522 9234353638 9295245737 2504545622 7444719616 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 1300000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 1321197 4801471362 3805613108 8775519849 7689630188 5030400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=113)
- 1698689 5756693248 0960916604 0299386911 5883520000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 1836709 9231598242 3120115083 9409758871 5916649324 5638675235 7424541060 0269678980 1120758056 6406250000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 1887379 1418627661 1872017383 5754394531 2500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=17)
- 1894107 1082585687 3842618680 3141313836 3289044615 9564883836 8594057968 1528106448 2405781745 9106445312 5000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 1958763 6905255695 3409549578 2821672037 2438430786 1328125000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=37)
- 2717625 8184863856 6964340490 7399198561 2241961689 5058425143 3610916137 6953125000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=689)
- 2835789 5389693068 4898119248 8692384217 9031116544 8536842778 5177953074 6547404800 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=321)
- 3026074 0758830960 0350303027 9691029540 2301239759 7174630409 8428933446 0714320509 8577495661 5648375161 5212139490 2965556346 8800000001 (Phil Carmody, k=3)
- 3973787 5261060706 8242618875 9040000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=321)
- 3987683 9873547476 1871142118 0841033728 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 4499844 2845725203 0578043059 6582694577 8428605087 4816756477 3149302877 1426828856 0719343337 6401202066 5970201722 8800000000 0000000001 (Phil Carmody, k=981)
- 4701977 4032891500 3187494614 8888982711 2746622270 8835008603 5006825113 6690378189 0869140625 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 5226737 1559056147 9879743397 0151959727 9641600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 5967878 8369174397 0586458697 7761850081 2054738095 6817260928 5567722717 9139641504 0050639667 2000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 6571299 9628800000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=153)
- 7883901 4924658708 2116219682 7600923858 9881921502 6596636284 7961635392 5473865541 6652774068 8776316057 0475315200 0000000000 0000000001 (Phil Carmody, k=11)
- 9052436 5372743432 6019984588 8000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=117)