Known 123-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 123-digit prime factors of googolduplex − 1
This is a list of known
123-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 136 9791913922 2502686470 2493941513 4462892788 4010538374 5770549296 4732204303 5059043088 1863035494 9164029676 4671802520 7519531251 (Phil Carmody, k=41)
- 139 4372337049 1701017874 7016978748 3620412645 5121944229 2822142876 1586345036 9896021510 5498965035 2196812800 0000000000 0000000001 (Phil Carmody, k=51)
- 140 7999266842 3967828287 4965982856 2184918774 9537018951 3643970027 8593748354 3964183313 1396426629 1200000000 0000000000 0000000001 (Phil Carmody, k=27)
- 153 8278765180 9730205528 7070230143 3147862752 5484625948 5930204391 4794921875 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 154 4949169028 1545830741 0703155200 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=39)
- 179 5893211952 2135058886 8792244176 8574553209 9088089088 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 190 6546502743 2570198510 4162088550 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=47)
- 429 6814813752 8545795188 3340818587 2077788441 6763494400 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=147)
- 640 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 696 3412720980 2640463075 7376000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=9)
- 724 6833664130 0919768064 9365539087 6725073664 4207789058 8292065043 4989260800 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)