Known 122-digit prime factors of googolduplex − 1
-
Alpertron
-
Number Theory
-
Known 122-digit prime factors of googolduplex − 1
This is a list of known
122-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.
These numbers have the form 1 + 2k × 2m × 5n,
where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.
In the list you can see the prime factors, their discoverer and their corresponding value of k.
- 11 0840284175 1756773165 6745771320 2904210705 9240592998 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
- 15 7646077236 5419204789 1957812011 5564769029 4684611080 2432267018 1937601496 8021593176 6724679619 0738677978 5156250000 0000000001 (Phil Carmody, k=9)
- 16 3184186946 9612419572 3480017317 5588157962 1744803797 1978515224 2418067959 9572375138 4678400000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 16 8343532333 2283657751 1796917785 9678122288 9251057483 6833229861 6839428742 9202151332 2747794420 4220220633 3290990796 8000000001 (Phil Carmody, k=7)
- 19 5828418774 5970344616 1052608169 3424474390 5280000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=281)
- 19 8339392280 5250989752 3200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
- 24 2085926070 6476802802 4242237528 2363218409 9180777397 0432787431 4675685714 5640788619 9652925187 0012921697 1159223724 4507750401 (Phil Carmody, k=3)
- 28 3467841536 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
- 29 5585778076 2016773223 8769531250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
- 32 2818021289 9171532800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
- 40 0096178054 8095703125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=537)
- 47 0197740328 9150031874 9461488889 8271127466 2227088350 0860350068 2511366903 7818908691 4062500000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 52 5425125093 6831790783 1880120284 0404585003 8528442382 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=397)
- 53 1691198313 9663491615 2282411213 7830400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 65 0097787017 6755102349 3751927162 5205874443 0541992187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=307)
- 66 9022355955 9186942460 7154817945 0845179412 4800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
- 70 6738825911 3537318333 1900029716 7406330993 5587502475 8324864248 0517047910 4000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
- 73 7091908315 8829056815 8387818610 3383350902 2628049933 7008222937 5839233398 4375000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=299)
- 87 4900289913 2047697490 0089084704 8546141267 7723572849 7457030824 2563981199 6797503692 8940527080 9221529600 0000000000 0000000001 (Phil Carmody, k=1)
- 88 9283245342 5883808530 2516486672 3132313113 4822321195 3182303424 5180772835 6347084800 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)