Known 122-digit prime factors of googolduplex − 1

  1. Alpertron
  2. Number Theory
  3. Known 122-digit prime factors of googolduplex − 1

This is a list of known 122-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

  1. 11 0840284175 1756773165 6745771320 2904210705 9240592998 4000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=237)
  2. 15 7646077236 5419204789 1957812011 5564769029 4684611080 2432267018 1937601496 8021593176 6724679619 0738677978 5156250000 0000000001 (Phil Carmody, k=9)
  3. 16 3184186946 9612419572 3480017317 5588157962 1744803797 1978515224 2418067959 9572375138 4678400000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  4. 16 8343532333 2283657751 1796917785 9678122288 9251057483 6833229861 6839428742 9202151332 2747794420 4220220633 3290990796 8000000001 (Phil Carmody, k=7)
  5. 19 5828418774 5970344616 1052608169 3424474390 5280000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=281)
  6. 19 8339392280 5250989752 3200000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=21)
  7. 24 2085926070 6476802802 4242237528 2363218409 9180777397 0432787431 4675685714 5640788619 9652925187 0012921697 1159223724 4507750401 (Phil Carmody, k=3)
  8. 28 3467841536 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=33)
  9. 29 5585778076 2016773223 8769531250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
  10. 32 2818021289 9171532800 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=7)
  11. 40 0096178054 8095703125 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=537)
  12. 47 0197740328 9150031874 9461488889 8271127466 2227088350 0860350068 2511366903 7818908691 4062500000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  13. 52 5425125093 6831790783 1880120284 0404585003 8528442382 8125000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=397)
  14. 53 1691198313 9663491615 2282411213 7830400000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  15. 65 0097787017 6755102349 3751927162 5205874443 0541992187 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=307)
  16. 66 9022355955 9186942460 7154817945 0845179412 4800000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
  17. 70 6738825911 3537318333 1900029716 7406330993 5587502475 8324864248 0517047910 4000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
  18. 73 7091908315 8829056815 8387818610 3383350902 2628049933 7008222937 5839233398 4375000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=299)
  19. 87 4900289913 2047697490 0089084704 8546141267 7723572849 7457030824 2563981199 6797503692 8940527080 9221529600 0000000000 0000000001 (Phil Carmody, k=1)
  20. 88 9283245342 5883808530 2516486672 3132313113 4822321195 3182303424 5180772835 6347084800 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)