# Known 116-digit prime factors of googolduplex − 1

1. Alpertron
2. Number Theory
3. Known 116-digit prime factors of googolduplex − 1

This is a list of known 116-digit prime factors of googolduplex − 1, i.e., 1010^(10^100) − 1.

These numbers have the form 1 + 2k × 2m × 5n, where 0 ≤ m ≤ 10100 and 0 ≤ m ≤ 10100.

In the list you can see the prime factors, their discoverer and their corresponding value of k.

1. 103903 1976707072 6459669592 8440790962 6493505124 8404822753 2800000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=339)
2. 110680 4644422573 0969600000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
3. 135602 5232179939 7769015478 1061559632 2652160000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=797)
4. 138235 7769919018 1533595023 2110917568 2067871093 7500000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=51)
5. 170499 0057306968 5450130658 1123072000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=269)
6. 174622 9827404022 2167968750 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
7. 186496 2136536699 9080826834 3055057815 0376710565 4900539404 0173991334 9348113797 0001582489 6000000000 0000000000 0000000001 (Phil Carmody, k=3)
8. 285392 1966603966 7293625246 7599790478 2079432516 9582400754 9524377600 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=111)
9. 329247 0888579058 0941292611 9114324238 6680884832 8163328000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)
10. 372529 0298461914 0625000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
11. 386670 7949996292 1050801663 1889061232 4751472795 8655107076 9216029585 8392268786 2965972271 9225101172 9240417480 4687500001 (Phil Carmody, k=883)
12. 438017 6776841437 9133901093 1551456451 4160156250 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=101)
13. 472236 6482869645 2136960000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
14. 547483 2946239267 9812470188 3593517274 9718192128 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=491)
15. +55871187633753621225794775009016131346430842253464047463157158784732544216230781165223702155223678309562822667655169 (Phil Carmody)
16. 585937 5000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=3)
17. 672623 2628759121 9404339019 9979159743 0145257321 0072757044 3392776267 0997196892 1308871358 6330413818 3593750000 0000000001 (Phil Carmody, k=3)
18. 723700 5577332262 2139731865 6304299424 0829374041 6025352524 6609900049 4570602496 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=1)
19. 917399 4463960286 0464432835 8120834776 3186259956 6731244949 5035535754 7691504353 9392322800 7421244050 2746218496 0000000001 (Phil Carmody, k=1)
20. 918760 4736847598 5138331470 0386317628 2302916263 7532185822 3235224672 1622835200 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=13)
21. 926748 1666833032 4294167864 3616299804 4062768395 2483217903 7936602316 8000000000 0000000000 0000000000 0000000000 0000000001 (Phil Carmody, k=11)